TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
نویسندگان
چکیده
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
منابع مشابه
NANO EXPRESS Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells
This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs). The nanowire films with the thick ZnO buffer layer (*0.8–1 lm thick) can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, ...
متن کاملHighly Robust Silver Nanowire Network for Transparent Electrode.
Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of thes...
متن کاملHierarchical TiO2–Si nanowire architecture with photoelectrochemical activity under visible light illumination†
Bandgap engineering of TiO2 is a substantial strategy for efficient water splitting in the visible light range. Introducing dopants and hydrogenation have been found effective for that purpose. In this paper, we report the development of a hierarchical three dimensional TiO2–Si nanowire (NW)-based photoelectrochemical (PEC) anode with visible light photochemical activity. The TiO2 NWs were synt...
متن کاملPlasmon-Enhanced Photocurrent using Gold Nanoparticles on a Three-Dimensional TiO2 Nanowire-Web Electrode
In this study, an anatase/rutile mixed-phase titanium dioxide (TiO2) hierarchical network deposited with Au nanoparticles (Au/TiO2 ARHN) was synthesized using a facile hydrothermal method followed by a simple calcination step. Such a unique structure was designed for improving the light harvest, charge transportation/separation, and the performance of photo-electro-chemical (PEC) cells. The pro...
متن کاملTiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells
TiO2 anatase nanowires have been prepared by a hydrothermal process followed by post-heat treatment in air. TiO2 nanoparticle/TiO2 nanowire composite electrodes were prepared for dye-sensitized solar cells (DSC) in order to improve light-to-electricity conversion efficiency. The TiO2 NP/TiO2 NW composite cells showed higher DSC performance than ordinary nanoparticle cells and fully nanowire cel...
متن کامل